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The three-dimensional resonant interaction of a plane Tollmien-Schlichting wave, 
having a frequency fi, with a pair of oblique waves having frequencies ifl, was 
observed and studied experimentally. In  the initial stages, the interaction proved 
to be a parametric resonance, resulting in the amplification of small random priming 
(background) oscillations of frequency $ fi, and of a packet of low-frequency oscill- 
ations. The resonant interaction of waves in a boundary layer was investigated also 
by introducing a priming oscillation with frequency f ’  = t fi + Af for different values 
of the frequency detuning Af.  The importance of the discovered wave interaction in 
boundary-layer transition is demonstrated. Causes of realization of different types 
of laminar-flow breakdown are discussed. 

1. Introduction 
Much theoretical and experimental work has been devoted to  the study of the 

physical nature of the laminar-turbulent transition phenomenon. The state of the 
art for this problem is adequately described in Eppler & Fasel (1980). 

Transition can be fruitfully studied by means of experimental modelling of the 
relevant complex wave phenomena taking place during this process. This permits ( 1 )  
the separation of different processes in more or less pure form; (2) the comparison 
of theoretical models with such processes; and (3) the tracing of sequences of such 
processes and phenomena, thus drawing nearer to an understanding of the pro- 
cess of transition to the turbulent regime. Developed in the pioneering work of 
Schubauer & Scramstad (1947), the method of the vibrating ribbon is one of the main 
methods for obtaining controlled conditions for the development of disturbances in 
boundary layers and in other shear flows (see e.g. the experiments of Nishioka, Iida 
& Ishikawa 1975; Kozlov & Ramazanov 1981). As a packet of Tollmien-Schlichting 
waves, observed in ‘natural’ transition in a Blasius boundary layer (Schubauer & 
Scramstad 1947), was modelled by a two-dimensional harmonic wave in the work of 
Klebanoff & Tidstrom (1959) and Kachanov, Kozlov & Levchenko (1977), fast 
development of three-dimensionality of both the disturbance fields and mean flow 
was discovered as an integral part of the laminar-flow breakdown process. A more 
accurate definition of the experimental model with the introduction of a controlled 
three-dimensionality into a boundary layer, which had been made by Klebanoff, 
Tidstrom & Sargent (1962), Tani & Komoda (1962), Hama & Nutant (1963) and 
Komoda (1967), gave the possibility of studying the process of the subsequent 
development of disturbances and mean flow at  transition to turbulence. Unfortunately, 
the reasons for the initial three-dimensionality remains undetermined. Various 
theoretical models (a good review is given in Craik 1980), prognosticating physically 
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likely mechanisms for the onset of three-dimensionality, have not been validated 
because of the lack of sufficiently detailed experimental data for their approbation. 
Theoreticians have to use the pioneering experiments by Klebanoff & Tidstrom (1959) 
and Klebanoff et al. (1962). These experiments gave detailed information on the 
development of disturbances at transition to turbulence, which, however, had to do 
with a later stage - the stage of a formed three-dimensionality. Moreover, unfortu- 
nately, a dearth of spectral analysis is present in these works. Therefore a comparison 
of theoretical results (in particular, in the works of Craik 1980; Nayfeh & Bozatli 
19793) with the experimental data has an only qualitative nature. 

On the other hand i t  is impossible to consider that  the question on paths of the 
randomization of the disturbances development process has been solved. The 
randomization in free shear layers (jets, wakes, mixing layers) takes place apparently 
by means of successive excitations of higher harmonics, in some cases subharmonics, 
and the generation of combination modes (see Sat0 1960; Sat0 & Kuriki 1961; 
Freymuth 1966; Miksad 1972, 1973). Such a type of transition was called an 
evolutionary transition, in contrast with the ‘catastrophic ’ breakdown of the laminar 
regime which is inherent to wall streams, in particular to boundary layers. The 
detailed description of the last type of transition has been established by the classical 
experiments of Klebanoff & Tidstrom and Klebanoff et al. (1962). This type of 
breakdown is characterized by the sudden appearance of ‘spikes ’ in the oscilloscope 
traces of the streamwise velocity signal and by a subsequent generation of packets 
of high-frequency oscillations in each period of a fundamental wave, eventually 
developing to turbulent spots. In  view of the detailed description of such a type of 
transition to turbulence in the work of Klebanoff et al. (1962), i t  is possible, following 
Herbert & Morkovin (1980), to name it  the K-type breakdown of a laminar regime 
or, briefly, by K-breakdown. The appearance of bursts of high-frequency oscillations 
has been called the secondary instability phenomenon. If theoretical models of the 
onset of three-dimensionality are not supported by experiment, the case of the 
high-frequency secondary instability is somewhat different. In  spite of available 
experimental data in the works of Klebanoff & Tidstrom and Klebanoff et al. 1962), 
Kovasznay, Komoda & Vasudeva (1962) etc. theoretical studies of this phenomenon 
(see Betchov 1960; Greenspan & Benney 1963; Gertsenshtein 1969; Landahl 1972; 
Zhigulyov et al. 1976, Zelman 1981 ; Itoh 1981) have a qualitative nature in view of 
the strong nonlinearity and three-dimensionality of the process. 

However, the K-breakdown regime is not the universal path of turbulence onset 
in boundary layers. I n  particular, Komoda (1967) and Kachanov et al. (1977) found 
that the transition in a boundary layer can take place without high-frequency 
bursts and turbulent spots. Kachanov, Kozlov & Levchenko (1980) showed how a 
low-frequency intermittency and turbulent spots can appear, the secondary instability 
mechanism not being invoked to explain their appearance. The transition pro- 
cess in the work of Kachanov et al. (1977), besides absence of the intermittency, 
had other features of the evolutionary type of transition. For instance, for the first 
time the excitation of the subharmonic was discovered in a wall boundary layer. The 
appearance of some low-frequency fluctuations was also registered. This was also 
observed by Saric & Reynolds (1980). These fluctuations, together with the subhar- 
monic, played a large role in the process of the flow randomization, being a kind of 
trigger mechanism for the beginning of the invasion of the spectrum into the region 
of high frequencies and for the breakdown of the laminar regime. It was supposed 
by Kachanov et al. (1977) that  a three-wave interaction (see Raetz 1959; Craik 1971 ; 
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Volodin & Zelman 1978) had been the reason for the subharmonic excitation. 
Rabinovich (1978) had supposed that low-frequency fluctuations, observed by 
Kachanov et al. (1977), might be amplified owing to the modulation instability 
phenomenon (see Whitham 1974). However, these hypotheses were not factually 
based. Furthermore. it was mentioned by Kachanov et al. (1977) that these 
fluctuations and the subharmonic had appeared simultaneously with the onset of 
three-dimensionality. This fact hints a t  their important role in the process of the 
beginning of three-dimensionality. 

This paper is devoted to the experimental study of the subharmonic excitation 
process in a laminar boundary layer a t  transition, initiated by an initially two- 
dimensional Tollmien-Schlichting wave with a frequency fi. The results of the 
investigation lead to an explanation for the excitation of low-frequency fluctuations 
with frequencies incommensurable with a fundamental wave frequency, and therefore 
give an explanation of one of the paths of flow randomization. 

2. Experimental procedures 
2.1. Experimental facilities 

The experiments were conducted in the ITPM low-turbulence wind tunnel a t  
freestream speed 9.18 m/s and turbulence level less than 0.02 yo. The wind tunnel has 
a 4 m long test section with a 1 m x 1 m cross-section. A flat plate having a chord 
length of 1.5 m, a span of 1 .0 m and a thickness of 10 mm was used. The leading edge 
was composed of two conjugate semiellipses with axis of 2 mm: 132 mm on the 
working side of the plate and of 8 mm: 132 mm on the opposite side. The flat plate 
was mounted in the test section horizontally under zero angle of attack. Beginning 
at  x = 100 mm from the leading edge, the pressure gradient was not more than 0.8 yo 
per 1 m of length, i.c. the model had essentially a zero pressure gradient, except for 
a region near the leading edge. 

Sinusoidal disturbances (Tollmien-Schlichting waves) were introduced into the 
laminar boundary layer by a vibrating ribbon 0.05 mm thick and 3 mm wide with 
the unsupported span of 300 mm. The ribbon was located 250 mm downstream of 
the leading edge at a height of 0.15-0.2 mm from the plate surface. 

2.2 .  Recording and processing of data 

Development of wave disturbances in a boundary layer and the structure of a mean 
flow were recorded by the use of one or two hot-wire anemometer probes. The wires 
were Wollaston with 6 pm diameter of platinum core and sensitive wire length of 
0.5 mm. The signals were conditioned using a DISA 55D01 hot-wire anemometer with 
the linearizer. The basic scheme of data recording is given in figure 1 (a) .  Constant 
and variable components of a signal from the first probe, a signal from the second 
probe and a reference signal (from the sine signal generator) were recorded, a t  all 
principal mcasurements, on four channels of a seven-channel tape recorder in the 
regime of frequency modulation, with the following signal processing. 

A typical scheme of signal processing for reproducing tape records is represented in 
figure 1 (b ) .  This scheme was applied for measurements of distributions of spectral 
components versus the space coordinates, for comparison of signals from the different 
probes, and for the measurement of a flow mean velocity (constant voltage). The 
frequency spectra were obtained using a different scheme. Beforehand, the record 
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FIGURE 1 .  Schematic of registration (a)  and processing ( b )  of signals. 
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FIGURE 2 .  Amplification curves for the fundamental waves ( 1 ,  2 ,  3, 4, 5) and corresponding 
subharmonics (Z ’ ,  3’, 4’, 5’) a t  different initial amplitudes of a fundamental wave: A ,  = 0.022; 0.163; 
0.218; 0.436 and 0.654%.f1 = 120 Hz, 4 = 137 x 

segment, corresponding to the measurement in the given point of the flow, was 
rerecorded on a second tape recorder supplied by a ring tape. After that, the record 
was reproduced during the time needed for conducting of spectral analysis in the 
regime of scanning of the analyser spectral window on a centre frequency. Recording 
of the spectrum was made by an (x, y)-recorder a t  5 s averaging times in analyser 
output and 4 Hz bandwidth. 
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FIGURE 3. Measurement regions with respect to the stability diagram. 1, 2 ,  experiments by Ross 
et al. (1970) and Kachanov et al. (1974); 3, 4, parallel and non-parallel theory of Saric & Nayfeh 
(1975). 

3. Resonance excitation of subharmonics from natural disturbance 
3.1. The choice of a measurement regime 

During the preliminary stage of the experiments, a study was made of a range of 
amplitudes of waves introduced by the vibrating ribbon as the type of transition 
discovered by Kachanov et al. (1977) took place. This type of transition is 
characterized by a low-frequency breakdown of a laminar flow (without formation 
of turbulent spots) through excitation of a subharmonic wave and incommensurable 
low-frequency fluctuations and by the filling of the spectrum as a result of a nonlinear 
interaction of high- and low-frequency disturbances. 

Streamwise distributions of amplitudes of the fundamental wave with the frequency 
fi = 120 Hz (P = 137 x lop6) and oscillations with the frequencyft = 60 Hz at differ- 
ent initial amplitudes of the fundamental wave are given in figure 2. The position 
of the regions of frequency parameters and Reynolds numbers under investigation is 
shown in figure 3, where the neutral stability curve for a Blasius boundary layer is 
taken from the work of Saric & Nayfeh (1975). The amplitudes of harmonics had 
been measured a t  y-positions corresponding to maxima in their y-distributions. The 
recording of subharmonics was made only when their amplitudes approached the 
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amplitudes of a fundamental wave. It was observed for the first time in the regime as 
A, = 0.163 yo. I n  this case the amplitudes of harmonics were only about 0.050/. At 
larger initial amplitudes A, the subharmonic overtakes the fundamental wave, and 
a t  approximately the same place a change of the amplification rate of the fundamental 
wave takes place. Normal-to-the-wall profilesofthe fundamental waveare transformed 
and their form becomes like a bell with a maximum placed far from the wall (see 
also Kachanov et al. 1977). A packet of low-frequency oscillations (f < f,) grows 
together with the subharmonic. I ts  appearance signals the onset of a process 
of the laminar-flow breakdown (also see Kachanov et al. 1977). Analogous results were 
obtained for the frequencyf, = 96.4 Hz ( F  = 2nfv/u& = 113 x lop6). 

It should be mentioned that, for all cases studied, the oscillations with a frequency 
fi had reached considerable amplitudes A; - A, only in the region of the second 
branch of the neutral curve and behind it. 

(its amplitude 
in the region of the second branch of the neutral curve approached 2 . 5 - 3 s  a t  
fi = 120 Hz in these experiments), the higher harmonics were excited and grew 
intensively from the very beginning of the measurement region (x 2 300 mm). At 
the same time the three-dimensionality of both fluctuations and the mean flow 
became stronger, and the regime of K-breakdown of a laminar flow (see Klebanoff 
& Tidstrom 1959 and Klebanoff et aZ. 1962) with typical ‘spikes’ in the oscilloscope 
traces and other phenomena arose. This quite different type of breakdown is a subject 
of special investigations. I n  just this sense the principal investigations of this paper 
were carried out a t  not too large values of initial amplitudes of disturbances, which 
corresponded approximately to ones in the work of Kachanov et al. (1977). 

The experiments were conducted mainly in two regimes of measurements corres- 
ponding to  two frequencies of the fundamental wave f, = 11 1.4 Hz (the principal 
regime) and fl = 96.4 Hz, a t  a freestream velocity U ,  = 9.18 m/s, a t  distances 
downstream from the leading edge between x = 300 mm and x = 760 mm. These 
values corresponded to frequency parameters F = 124 x lop6 and F = 109 x lop6 and 
ReynoldsnumbersR = RdZ = (Bm x/v):  = 43&684(seefigure3). Thusthedimensional 
values of disturbance frequencies and a freestream velocity were chosen the same 
as those in the works of Kachanov et al. (1977,1980) and Gilyov, Kachanov & Kozlov 

A t  the ‘initial’ section x = 300 mm (Re = 430), at y/6 = 0.26 (i.e. approximately 
in the region of a maximum amplitude of the fundamental wave), in the principal 
regime of measurements (f, = 11 1.4 Hz, F = 124 x lop6) the amplitude of the fund- 
amental wave was A, = ( u ’ 2 ) ~ / / ,  = 0.62 %, the amplitude of the second harmonic 
with the frequency 2fi was A, = O.OllS%, and the amplitude of the third harmonic 
3f1 was A, = 0.0007 yo. The boundary-layer thickness was determined experimentally 
from the condition U I U ,  = 0.99. The fluctuations with frequencies 3f1, 4f,, . . . were 
random fluctuations having no definite phases, i.e. they were some background 
fluctuations having no connection with the fundamental wave. Their amplitudes in 
this point were not changed practically by switching off a fundamental frequency 
signal fed to the vibration ribbon. As in the work of Kachanov et al. (1977), maxima 
of higher-harmonic amplitudes were observed near the wall at y/S z 0.05, and their 
maximum values were at  this position slightly higher, namely A,  = 0.035% and 
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As an initial amplitude A, of the fundamental wave approached 1 

(1981).t 

7 I n  the experimental work of (:ilyov ~t nl. they obtained data on wavenumbers and phase 
velocities of a, fan of oblique waves at the frequency 55 Hz which cwincide with the subharmonic 
frequency a t  the principal regime (fi = 11  1 4 Hz) of this paper. 
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FIGURE 4. Spectra of fluctuations in the transition region a t  appearance of low frequencies ; 
y/6 = 0.26: 1, fl = 96.4 Hz (Fl = 109x z = 600 mm ( R  = 608); 2, fl = 111.4 Hz 
(Fl = 124 x z = 640 mm (R = 633). 

A,  = 0.0027 Yo. However, they were sufficiently small, and apparently had no 
influence on the process of the subharmonic excitation under the investigation (see 

3.2. Analysis of oscillation oscilloscope traces 

In  these experiments as well as in the experiments by Kachanov et al. (1977), the 
essential breakdown of a laminar flow had started with the appearance of diffused 
low-frequency peaks, including the subharmonic, in the amplitude spectrum. At that 
stage a low-frequency vibration of a whole periodic, stationary, near-sine curve was 
observed on the oscilloscope screen at synchronization of the signal from a reference 
signal fed to the vibrating ribbon. The amplitude spectra of fluctuations in this region 
are presented in figure 4 for two different frequencies of the fundamental wave 
fi = 96.4 Hz ( F  = 109 x lop6) and fl = 1 1  1.4 Hz (F = 124 x lov6). In  both cases the 
spectrum of low-frequency fluctuations (f < fi) is very broad. In  the case of 
fl = 96.4 Hz the frequency of the maximum of a packet coincides with the subhar- 
monicfi, and in the case offl = 111.4 Hz the peaks f * z 34 Hz and f ** z 77 Hz are 
observed. In  both cases the combination peaks with the frequencies fi-f *, fl+f *, 
2f1 - f *  are observed. 

Amplitude spectra like those given in figure 4 definitely point out the excitation 
of low-frequency fluctuations, indicate the appearance of the subharmonic (see also 
Kachanov et al. 1977) and give information on the development of these disturbances. 
However, these spectra, of course, are not sufficient for an analysis of the causes of 
the excitation of subharmonics and other low-frequency oscillations. Therefore an 
investigation was undertaken of the phase structure of low-frequency fluctuations (of 
spectral-component phases) on the basis of the analysis of the oscilloscope traces 
obtained a t  the output of the frequcncy filter with a narrow bandwidth. Phase 

54.5). 
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FIGURE 5. Variation of amplitude and jumps of phase of a subharmonic ( l) ,  with respect to reference 
signal (2), with the slow time for 7 ‘moments’. Bandwidth is 4 Hz; z = 640 mm (R = 628); 
y/S = 0.26; z = -2.5 mm. 

correlations between these fluctuations and the fundamental wave are of the greatest 
interest. They can have a definite value only for some spectral components. The 
investigation showed that spectral components with frequencies fi = 4 fi, fg = t fi and 
f; = 8 fl have such correlations, invariable during the observation (several hours). I n  
other words, these components proved to be coherent with the fundamental wave. 
Of course, the nature of the subharmonics, i.e. of the oscillations with the frequencies 
of fj, are of greatest interest, because others are the result of the nonlinear interaction 
between f; and fl, 2f1, 3f1. 

The oscilloscope traces of the subharmonic oscillations (in the 4 Hz bandwidth) are 
presented in figure 5. They were obtained a t  a fixed position of the probe in the region 
where low-frequency fluctuations were large enough. The curves 1 ,2 ,  . . ., 7 correspond 
to seven moments of ‘slow’ time T .  The time T is slow in the sense that AT (that 
is an interval between the i-moment and the (i+ 1)-moment) is equal to n!i’l, n > 1, 
where is the subharmonic period. 

The introduction of two timescales permits one to  operate with concepts of the 
amplitude and phase as the characteristics obtained with some averaging in times 
AT and to speak about changes of these characteristics with a (slow) time. The curves 
in figure 5 correspond to those observed on the oscilloscope screen. Figure 6 (a )  shows 
the oscilloscope traces in a unified timescale. 

It is seen that a subharmonic amplitude changes continuously and its phase remains 
practically constant between its 180° jumps. The phase jumps take place when the 
amplitude crosses its zero value.? 

The characteristic picture of the change of a subharmonic amplitude and phase is 
possible at the amplification of small background ‘priming ’ subharmonic oscillations, 
whose amplitudes and phases change randomly in the time, by means of the 
parametric resonant interaction with the fundamental wave. Indeed, the parametric 
resonance has the property that the resonance amplification takes place only in the 
case when ‘priming ’ oscillations (i.e. oscillations determining initial conditions for the 

t As a matter of fact, some background fluctuations, whose phases have no definite values, become 
considerable in the region where the phase changes its value (intervals of time A ,  B in figure 6). 
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FIGURE 6. Oscilloscope traces in unified timescale. (a)  (I) ,  total signal; subharmonic signal in 4 Hz 
bandwidth (2) and in 30 Hz bandwidth (4); (3), reference signal. ( b )  subharmonic signals in 4 Hz 
bandwidth from two probes; (5), z = -2.5 mm, (6), z = + 12.5 mm. Principal regime, z = 640 mm 
( R  = 628), yJS = 0.26. 

FIGURE 7. Qualitative picture of movement of priming oscillations vector a t  uncontrolled 
conditions. BJt)  = resonant component; Ba(t) = damping component. 

resonance) have a definite phase and a non-zero amplitude. In  contrast, 'priming' 
fluctuations decay in the case of the orthogonal phase. 

' Priming ' subharmonic oscillations with an amplitude A ( T )  and a phase #(T),  slowly 
changing in the time, can be represented in the form 

ui = B4(T)exp ( - b i t ) ,  ( 1 )  

where Bi(T) = At(!!') exp [i#~t(T)] is a complex amplitude vector. Of course, At(T) and 
#a(T) are considered to be slowly changing during a subharmonic period l& 

A vector diagram of the evolution of a vector B;(T) with a (slow) time is represented 
qualitatively in figure 7 .  The curved line corresponds to the trajectory of a movement 
of the end of a vector Bi(T). Three subsequent positions of a vector are also shown. 
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FIGURE 8. a-distributions of amplitudes and phases of fundamental wave (1) and subharmonic ( 2 )  ; 
fi = 96.4 Hz (I$ = I09 x lop6), z = 600 mm ( R  = 608), y/S = 0.26. 

At the arbitrary moment of ‘ slow ’ time T ,  a ‘priming ’ disturbance can be represented 
as the superposition of components with ‘resonant’ and ‘ antiresonant’ phases which 
corresponds to components B J T )  and B,(T) in figure 7 .  I n  accordance with the 
aforesaid, only the projection of a randomly oscillating amplitude vector of a priming 
B+(T) in the resonance direction, given by the subharmonic phase $r favourable 
(resonant) relative to the fundamental wave, is always in the parametric resonance. 
Depending on the value of this projection, the amplitude and the phase of the 
resonantly amplified subharmonic change with the time. 

A slowness of the change of B$(T) with time means from the spectral point of view 
that the given quasi-stationary interpretation of the resonance onset is correct for 
sufficiently narrow packets of ‘priming ’ fluctuations near frequency f+. If a spectrum 
of ‘priming’ low-frequency fluctuations is broad, i t  is more convenient to  operate with 
the concept of the ‘spectral width of resonance’, which is characterized, for instance, 
by the width of a packet amplified by means of resonance from a continuous 
spectrum of ‘priming ’ oscillations. This resonance width Afr determines (in time) 
a characteristic period of beats of the resonantly amplified subharmonic. 

3.3. Existence of synchronism 
The measurements showed that subharmonic fluctuations were three-dimensional in 
the region of their rapid amplification. The amplitudes and phases of the fundamental 
wave and the subharmonic versus the spanwise coordinate z are shown in figure 8 
for the regime fi = 96.4 Hz. The analogous picture for the principal regime of the 
measurements (fi = 111.4 Hz) is given in figure 9 ( a ) .  The synchronous oscilloscope 
traces of the oscillations with the frequency f+ (at 4 Hz bandwidth) a t  points 
z = -2 .5  mm and z = 12.5 mm are given in figure 6 ( b ) .  

The 180’ jumps of the subharmonic phase in the regions of minima in z-distributions 
of amplitude are the characteristic feature of the represented data. The observed 
distributions of amplitudes and phases of the subharmonic correspond to a pair of 
oblique waves, propagating with angles that are equal to each other but have opposite 
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FIGIJRE 9. z-distributions of amplitudes and phases of fundamental wave ( 1 )  and subharmonic (2) ;  
principal regime; y/S = 0.26: (a ) ,  J: = 600 mm (R = 608); ( b ) ,  x = 300 mm (R = 430). 

direction relative to the mean flow. Indeed, the sum of such two waves can be 
presented in the form 

B:+(T) exp [i(ai z+pi z-04 t)] + B;(T) exp [i(a+ 2-p; z - 04 t ) ]  

= Bi(T)cos(/3iz)exp [i(a+z-w+t)] (2) 

(where Bi = B:+ + B;, B,+ = B; are the complex amplitudes of oblique waves), which 
corresponds to the disthbutions in figures 8 and 9(a) and gives the space beats of 
the standing-wave type in the direction of the z-axis. The beat period is A, = 27c/p+, 
and the interval between antinodes is $Az = It/& 

In  the principal regime (fl = 111.4 Hz) a t  x = 600 mm (R = 608) the value /3! is 
equal to 0.207 mm-l; pis* = 0.352, and a t  fl = 96.4 Hz = 0.168 mrn-l, 
&S* = 0.286 (here and henceforth S* = 1.72O8(vz/um)4). 

It should be mentioned that a t  the initial section z = 300 mm (Re = 430) the 
z-distributions of the amplitude and the phase for the fundamental wave and the 
z-distribution of the subharmonic amplitude have a rather smooth, quasi-two- 
dimensional nature, as is seen in figure 9(b). The subharmonic phase does not have 
a definite value in this section. In  the region of subharmonic amplification a 
dependence of the fundamental wave amplitude on z increases gradually, but the 
fundamental wave phase is almost constant as before (figures 8, 9a).  

The main condition for the existence of a three-wave nonlinear resonance, in 
particular of the parametric resonant amplification, is the condition of phase 
synchronism (Raetz 1959; Craik 1971) 

w1 = w 2 + 0 3 ,  a1 = a2+a3. (3) 

In  the case of the excitation of a pair of oblique subharmonics a2 = u3 = a+ and 
w2 = w3 = w+, and conditions (3) in this case reduce to 

w1 = 204, a1 = 2a4 

or 

8 

(4) 

F L Y  138 
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regime; t = -2 .5  mm, y/6 = 0.26. 

( b )  

I t  is possible to rewrite the last equation in the form 

where C,, Ci are phase-velocity vectors for a fundamental wave and a subharmonic, 
0: is the angle between the vector Ci (or the subharmonic wavevector K:) and the 
vector C ,  (or the mean-flow direction). 

The synchronism conditions (4) mean that the speed V,: with which it is necessary 
to move along the x-axis in order that  the subharmonic phase should not depend on 
the time, has to be equal to the corresponding speed V,, for the fundamental wave. 
It is easy to show that for this speed 

w - ICI - w  v, = ~ - - - - 
llylcos0 coso a '  

and so the equality V,: = V,, is equivalent to the synchronism conditions (4). In  other 
words, for existence of a synchronism the difference of phases for the fundamental 
wave and the subharmonic $4 has to remain constant in the downstream direction 
if both of them are calculated in parts of the fundamental wave (or the subharmonic) 
period. 

Thex-distributionsofthe phases ofthe fundamental wave$,(x) and the subharmonic 
&(z) for the principal regime, measured in radians of the fundamental wave period, 
are presented in figure 10(a) .  For comparison, the corresponding distribution of the 
phase $$(x)  of the two-dimensional Tollmien-Schlichting wave of frequency fi is 
given, as, instead of oscillations of frequency f,, the small-amplitude oscillations of 
frequency f; were excited by thc vibrating ribbon. It can be seen that, all dependences 
are straight lines and correspond to the dimensional wavenumbers a,  = 0.204 mm-', 
a: = 0.103 mm-l, af = 0.1 13 mm-l. The corresponding values of the phase differences 
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111.4 124 0.113 3.10 0.192 0.34 0.204 0.347 3.43 0.37 

TABLE 2 

A$ = $$-$, and A$p = measured in parts of the fundamental wave period, 
are shown in figure lO(b) .  The constancy of A$ and the measured values of a, and 
of at testify to  the fulfilment of the synchronism conditions (4) within measurement 
errors. Analogous results were obtained in the regime with fl = 96.4 Hz. I n  particular, 
a: = 0.085 mrn-l, ai6* = 0.175 a t  x = 600 mm. 

After determining values of a4 and p+ for components of Kf = (at,&), 
K i  = (a$,-&, i t  is possible to determine phase-velocity vectors and propagation 
angles of excited subharmonics : 

in particular, 

The results of corresponding calculations are brought together in table 1 
(x = 600 mm, R = 608, 6* = 1.70 mm, U ,  = 9.18 m/s). 

For the fundamental wave and the plane Tollmien-Schlichting wave with a 
subharmonic frequency, the results are given in table 2 (for the principal regime). 

Propagation angles for the subharmonics are about 63'44' in both regimes, and 
the values of /3i/ai are about 2. 

It should be mentioned that this value of 04 differs somewhat from theoretical ones. 
Thus calculations by Volodin & Zelman (1978) for the point of the exact (without 
detuning) realization of the resonance conditions (R = 636, F = 124 x gave 
values of wavevector components as ag = 0.19, pi = 0.197, i.e. /3;/ag = 1.04 and 
0i = 46'. The calculations was carried out a t  fixed pi, and the propagation angle of' 
the subharmonic changed from 0; = 50" for R = 549 up to 0; = 44" for R = 723. 

I n  the present experiment, the x-component of the phase velocity Gxi/ U ,  is equal 
to 0.073 in the principal regime (F; = 62x lop6), which coincides with the 
corresponding value for the Tollmien-Schlichting wave with frequency F = 64 x lop6 
(f = 55 Hz) having propagation angle 0; = 66' (see Gilyov et al. 1981 ). For plane waves 
with the same frequencies both in the present experiment and in the experiment by 
Gilyov et al., phase velocities coincide: Clp/U, = 0.34. These comparisons in addition 
confirm that (in principal regime) the conditions of synchronism occur and they 
are realized just for waves propagating under angles 08 x 64'. Their realization can 
be seen also from tables 1 and 2 as the fact that V,i = V,, = 0.37 (but Cxi $. Cxl!). 
It can be noted that as observed in the pictures by Saric, Carter & Reynolds (i981), 

8-2 
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0 0 '1' ', \ 
0 '. 

FIGURE 11. Experimentally detected triad of waves. Principal regime. Values of 
parameters are given in tables 1 and 2. 

the ratio /3i/a+ is approximately equal to 2, which again supports the experimental 
value of the resonance angle 6; = 63"-64" (of course in the studied range of 
parameters). Apparently, the difference of this value from the theoretical one can be 
explained by a very slow dependence of a on /? (see e.g. Gilyov et al. 1981, figures 
29, 35). At small values of d a l d p  a small error Aa in a calculation of the dependence 
a: = a+(/?) (due to neglecting non-parallelism effects, for instance) can result in a large 
error A/? in the determination of the resonance value /?; from the condition a;(/3) = *al, 
because AB = Aa/(da/d/?). 

Hence the analysis of x- and z-distributions of subharmonic amplitudes and phases 
shows that the excited oscillations with the frequency fi = ifl are the pair of oblique 
waves for  which the conditions of the existence of the three-wave resonance, 
described theoretically by Raetz (7959),  Craik (1977) and Volodin & Zelman (7978),  
are realized. The development of the fundamental wave does not depend on the 
subharmonic development in an initial region of the amplification of small 'priming' 
subharmonic fluctuations (figure 2), and the resonanrc is in fact the parametric 
resonance (see Volodin & Zelman 1978) whose properties determine the detected 
features of the behaviour of amplitudes and phases of the fluctuations with frequency 
4. The experimentally detected resonant triad of waves is presented in figure 1 1  as 
a vector diagram. 

3.4. Amplitude and phase projiles 
The normal-to-the-wall distributions of amplitudes and phases of the fundamental 
wave and the subharmonic a t  x = 650 mm ( R  = 633) for the principal regime are 
given in figure 12(a) .  The profiles of the amplitude and the phase are typical ones 
for Tollmien-Schlichting waves in the region of the swond branch of the neutral 
curve. The amplitude of the suhharmonic has one clear maximum approximately in 
the critical layer y = yc, which is the same for fi and f i ,  because the synchronism 
condition is fulfilled (i.c. w+/a i  = Vz; = V,. = W J a , ) .  A maximum in the y-profile of 
the subharmonic is almost absent outside the boundary layer. As a whole the form 
of the y-profile of the subharmonic amplitude is like the corresponding distributions 
obtained by Gilyov et al. (1981) for linear oblique Tollmien-Schlichting waves. The 
distribution of the phase of the suhharmonic has the characteristic form of a 'dipper'. 
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FIGURE 12. Profiles of amplitudes and phases for fundamental wave (1) and subharmonic (2) in 
the region of resonant amplification ( a ) ,  x = 650 mm (R = 633) and in initial point ( b ) ,  x = 300 mm 
(R = 430). 

For this distribution a second zone of a strong shear of the phase near the wall 
is characteristic. This distribution differs from the usual phase profiles of plane 
Tollmien-Schlichting waves, but again i t  is like the form of the profile for oblique 
(three-dimensional) eigenoscillations of a boundary layer, which were studied experi- 
mentally by Gilyov et at. (1981). In  turn Gilyov et al. (1981) had mentioned the good 
correspondence of their experimental y-profiles of disturbances for oblique waves to 
theoretical profiles given by Craik (1980). 

Such y-profiles of amplitudes and phases of oscillations with frequency f i  are formed 
as a result of the resonant excitation of the subharmonic out of initial disturbances 
which have a profile A&) shown in figure 12(b).  As was mentioned, the phase of 
oscillations does not have a definite value here. Also shown in figure 12 (b )  are initial 
distributions of amplitudes and phases of the fundamental wave A,(y) and q51(y). 

Mean-velocity profiles, measured a t  x = 300-650 mm corresponded to a Blasius 
profile to within 1 'A. A distortion of the mean-flow velocity by disturbances 
was not observed in this x-range. A deviation of mean-velocity profiles from the 
Blasius laminar profile had been observed downstream from this range in the region 
of formation of a ' bell-like' form of the fundamental wave profile (see 93.1). A form 
of mean-velocity profile in this region had been studied by Kachanov et al. (1977) 
(see also Kachanov 1978). 

3.5. Growth curves fo r  disturbance amplitudes 

The measurements of growth curves for the amplitudes of disturbances were made 
in the region of the maximum of subharmonic y-profiles a t  y/S= 0.26. This 
coordinate was close to  the coordinate of the maximum of the fundamental wave at  
the beginning of the measurement region (see figure 12). 

The growth curves for the amplitudes ofthe fundamental wave and the subharmonic 
in the principal regime are presented in figure 13. The amplitude of the fundamental 
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FIGURE 13. Amplification curves for fundamental wave (1) and subharmonic (2). 
Principal regime, y/6 = 0.26, z = -2 .5  mm. 
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wave grows inside the neutral stability curve and then decays in the region after the 
second neutral branch. I n  figure 13 the decay begins a little earlier than in the theory 
see figure 23 ( b ) ,  that  is connected with a moving of the maximum in the profile A,&) 
to the wall because of non-parallelism effects (see Kachanov, Kozlov & Levchenko 
1975, 1977; Saric & Nahfeh 1975). 

The measurements showed that the fluctuations with frequency f: a t  x < 480 mm 
(R < 543) had no definite phase values, i.e. they were not correlated with the 
fundamental wave and were some background fluctuations with a continuous 
spectrum. Beginning from x = 500 mm (R = 555) i t  is possible to  indicate some 
definite value around which the phase oscillates, which means the appearance of the 
resonant amplified subharmonic. Beginning from x = 540 mm (R = 577) the phase 
of the fluctuations with the frequency f +  ceases to oscillate and gains a fixed value. 
It means that here and further the resonantly amplified subharmonic predominates 
considerably over background fluctuations - a source of a phase noise. On the length 
x = 540-700 mm (R = 577-657) a practically exponential growth of the subharmonic 
amplitude is observed, the amplification rates being much larger than those in the 
linear theory. 

It should be mentioned that the amplitude of the fundamental wave is almost 
constant in this region - a neighbourhood of the second branch of the neutral curve 
(taking into account a movement of the maximum to the wall). Then the subharmonic 
becomes equal t o  the fundamental wave in amplitude. Approximately in this place, 
large deviations of fundamental wave amplification rate from a linear law and a large 
deformation of a profile A,(y) are observed, which indicates the onset of the 
breakdown of the laminar regime (see the end of region I1 in Kachanov et al. 1977). 
A large low-frequency vibration of the total hot-wire anemometer signal was observed 
on the oscilloscope screen in this region (see figure 6, trace 1) .  It should be mentioned 
here that no indications of breakdown were observed in this region as a subharmonic 
had been amplified from a time-controlled priming (see 94.4). 

3.6. Evolution of $fluctuation spectra 
The amplitude spectra of velocity fluctuations for different, downstream positions, 
for y/S = 0.26, a t  the principal regime are given in figure 14(u). In  the initial 
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FIGURE 14. ( a )  x-evolution of amplitude spectra of fluctuations: curves 1 , 2 , 3 , 4 , 5 , 6 , 7  for x = 300, 
480,600,640, 680, 720, 760 mm, z = -2.5 mm. ( b )  z-evolution of amplitude spectra of fluctuations: 
curves 8, 9 for z = -2.5, +5.0 mm; x = 600 mm. 

spectrum, the fundamental wave with frequency fl = 11 1.4 Hz and its second 
harmonic fi = 2f1 are presented mainly. Some rises on the frequencies of 16 and 32 Hz 
are connected with the vibration background of the facility (see e.g. the vibration 
spectra in Kachanov 1978). Small peaks on frequencies, divisible by the frequency 
of 50 Hz, are interference from the electric network. 

At x = 480 mm ( R  = 543) the spectrum is almost unchanged qualitatively. The 
appearance of the small third harmonic is observed here. 

In  the region where a rapid resonant amplification of the subharmonic is observed, 
the spectra demonstrate a singling out and rapid amplification of a low-frequency 
oscillation packet having two maxima of frequencies f * x 34 Hz and f ** x 77 Hz. As 
had been mentioned in Kachanov et al. (1977) the relation f ** x fi - f * or what is the 
same, ij( f * + f **) x f+ takes place for f * and f **, i.e. the subharmonic is the centre of 
the packet. An amplification of the combination modes nflff*, where n = 1 , 2 ,  3, is 
observed too. In  this way the gradual filling and smoothing of the spectrum begin 
when all of these spectral components grow (x = 720, 760 mm, R = 667, 689). 

The process proceeds by the same way as in the experiments of Kachanov et al. 
(1977). The appearance of ‘definite low-frequency fluctuations’f* and f * *  is as a 
signal to the beginning of the spectrum filling, which proceeds by the way of an 
interaction of growing components f * ,  f * *  with the fundamental wave and its 
harmonics, with the generation of combination modes. It was inentioned in Kachanov 
et al. (1977) that the frequency f * was quite random, it depended on amplitude and 
a frequency of the fundamental wave, but the nature of this dependence has not been 
understood. Rabinovich (1978) had suggested that the modulation instability of the 
fundamental wave is the reason of the excitation of harmonics of f ,+ f * type. 
However, this suggestion was scarcely argued. 
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3.7. Reasons f o r  excitation of incommensurable low-frequency jluctuations 

It is necessary to mention the four following important circumstances. 
First, although a considerable rise in amplitude spectra in the immediate neigh- 

bourhood of the frequency f;, except the last sections x = 720,760 mm, is not observed 
(this prevented the detection of the subharmonic early and made it difficult to search 
for it in the work of Kachanov et al. 1977), the central frequency of a low-frequency 
fluctuation packet is close to & and i ( f  * + f **) x if, (see $ 3.6 and figure 14a). 

Secondly, the analysis of the oscilloscope traces in figures 5 and 6 shows that 
antinodes in subharmonic oscilloscope traces, both a t  the analyser bandwidth of 
2 A f  = 4 Hz and 2 A f  = 30 Hz, correspond to the slow time moments when the 
resonant amplification of random priming fluctuations takes place (see $3.2). The 
resonant nature of subharmonic amplification at these moments of time is corroborated 
by the fact that  the fluctuation phase in antinodes always has a definite (resonant) 
value $r even if the antinode length is equal only to 1-2 periods of the subharmonic. 

Thirdly, the main energy of low-frequency oscillations in a filtered range of fre- 
quencies from f;- A f  up to  fi + A f  a t  x 2 500 mm is contained just in these antinodes, 
i.e. in resonantly amplified fluctuations being scraps of sinusoids of frequency f4 with 
a variable amplitude but with a constant phase (figures 5 and 6) .  

Fourthly, the whole of the low-frequency fluctuation packet, including f * and f **, 
has a small amplitude in the z-region, where the amplitude of the resonant 
subharmonic is small owing to an  interface of a pair of oblique waves of type (2). This 
fact is demonstrated by the spectra in figure 14( b)  obtained a t  z = -2.5 mm and 
z = + 5.0 mm in the principal regime. The form of low-frequency fluctuation packet 
is practically unchanged, and so amplitudes of all components are changed propor- 
tionally to the subharmonic amplitude. 

From the listed observations, i t  is possible to draw the conclusion that the 
parametric resonance leads to thP ampli$cation not of a narrow spectral harmonic f ; ,  but 
of a rather broad packet of low-frequency jluctuations. 

As has been mentioned in 9 3.2, i t  means, from the quasi-stationary point of view, 
a sporadic beginning of the resonance a t  the intervals of the slow time, when the phase 
of a priming subharmonic oscillations is favourable for a resonance which leads to 
the appearance of antinodes having a fixed resonant phase $r (or $r + x, which is the 
same) on the subharmonic oscilloscope traces. At the same time, such beats of 
amplitudes and jumps of phases from the point of view of the spectral analysis 
correspond to the presence of a broad packet in the spectrum, which indicates a rather 
large spectral width of the resonance and a rather broad spectrum of priming 
fluctuations. 

Thus the excitation of mysterious ‘definite low-frequency fluchations ’ (see 
Kachanov et al. 1977) takes place owing to the resonant parametric amplification of 
fluctuations with a frequency fi from a continuous spectrum of priming oscillations. 
The peaks on frcquencics f * and f**  in spectra are turned out after the Fourier 
transformation of fluctuations on large times (i.e. in broad integration limits) because 
of an amplitude modulation of the subharmonic and its phase jumps. 

An estimate of the spectral width of the discovered resonance is of interest. The 
analysis of the oscilloscope traces on frequency f i  a t  x =600 mm (R = 608) showed 
that, in the analyser bandwidth of 4 Hz, the most-probable length of the antinode 
in the time (a duration of the resonance) makes up T A  x 0.2 s ,  which corresponds to 
the width of the spectral window of the analyser ( f A  = l /TA z 5 Hz). In  the 30 Hz 
bandwidth, T A  z 0.03 sand f A  x 33 Hz were obtained, which coincide with the values 
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for the spectral window too. Thus the observed width of a resonantly amplified packet 
Af 30 Hz. Indeed, the spectra in figure 14 ( a )  indicate the width of a rapidly growing 
packet of low-frequency oscillations be Af - 50 Hz. Additional estimates will be 
obtained in 5 4.2 from results of experiments with controlled priming disturbances. 
So a large width of resonance Af,. - f i  means, in particular, that  an appreciable 
amplification of subharmonic oscillations takes place in the space in distances of 
Ax - hi = 2n/a+. Indeed a characteristic length of the resonantly amplified packet 
in the space is Ax - Ci/f; - Ci/Af,. = hi. Since the amplification is convective 
(drifting), a packet length defines the distance where the resonance has time to 
manifest itself, and after that a change of phase of priming oscillations to an 
unfavourable value a t  an initial section can no longer influence the result of the 
amplification. 

The results of the measurements show that this feature is present. So in the 
principal regime hi = 61 mm. The intensity of resonantly amplified fluctuations grows 
by a factor of approximately 4.5 in this distance (see figures 13 and 23a). It is to be 
noted too that in the introduction of controlled priming disturbances (9  4) the 
resonance has time to stretch a trajectory on the vector diagram a t  300 mm, i.e. a t  a 
distance of only 50 mm from a vibrating ribbon (see 94.1, figure 16). 

4. Resonant amplification of a controlled subharmonic priming oscillation 
4.1. Analysis of oscilloscope traces of resonantly amplified Jluctuations 

In order to study the process of the parametric resonant excitation of the subharmonic 
in detail, the experiments in the principal regime were repeated with the introduction 
of controlled small disturbances of frequency f ’  = f i  + Af into a boundary layer. The 
frequency detuning Af was changed in the range of k30 Hz. These disturbances, 
introduced (as in the work of Saric & Reynolds 1980) by the same vibrating ribbon 
and simultaneously with a fundamental wave fi = 11 1.4 Hz (E;  = 124 x played 
the role of a controlled deterministic priming for the subsequent parametric 
amplification. 

The phase of such a priming disturbance relative to the fundamental wave (or to 
reference signal) of frequency fl was slowly changed (‘drifted’) linearly with a time, 
$ = -Awt. Indeed, oscillations of frequency f ’  = f&+Af can be represented as 
oscillations of frequency fi but with phase depending on the time : 

(5) 

The oscilloscope traces, corresponding to 7 moments of the slow time, are shown 
in figure 15(a). They demonstrate a time displacement of the phase of a subharmonic 
priming, containing in the ribbon signal, and the subharmonic from a flow in the 
initial section (x = 300 mm) relative to the reference signal. The dependences of 
subharmonic amplitudes and phases on a slow time (measured in the periods of q), 
obtained by processing of such oscilloscope traces, are presented in figure 15(c). 

Amplitudes and phases of the subharmonic oscillations must undergo complex 
changes downstream in accordance with the parametric-resonance property to 
amplify only the priming oscillations having a definite phase #,. or #,+K (see $3.2).  
Namely, with an initial disturbance of a type ( 5 )  in the case A o  < wi,  the resonance 
must appear periodically in time with a period TA = (2Af )-l since the phase 
$(t)  = -A&, changing in time, takes periodically the resonant values -Awt = #,. (or 

When there is linear growth of the phase with time, the amplitude of periodically 

u’(t) = A,exp{i[ax-((w;+Aw) t]} = A,exp{i[ax-qt+$(t)]}. 

- A d  = #,+x). 
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FIGURE 15. Behaviour of amplitudes and phases of fluctuations a t  controlled conditions. Principal 
regime. y/S = 0.26. z = -2.5 mm. 1, 4, subharmonic, z = 300, 650 m m ;  2, priming oscillation; 3, 
reference signal. (a )  oscilloscope trace of subharmonic in 7 moments of slow time; ( b )  oscilloscope 
trace of subharmonic in unified timescale; (c) variation of amplitudes and phases on slow time. 

amplified oscillations of frequency f+ must be changed with the time according to law 
of Icos(Awt)I with periodical jumps of the phase on 180", because an initial 
disturbance with any intermediate value of the phase can be expanded into resonant 
and antiresonant components. Just  such a behaviour of the amplitude and the phase 
of the subharmonic was detected in the region of its amplification (x 500 mm, 
R 2 555). The oscilloscope traces of the subharmonic (in the bandwidth of 4 Hz) in a 
unified timescale are given in figure 15 (b). The beats, meaning the periodic appearance 
of the resonance at instants when a drifting phase of priming fluctuations (curves 2 )  
gains a resonance value, are well seen. This phenomenon is illustrated in figure 15(a) 
by the behaviour of the fluctuation amplitude and phase in an expanded scale of the 
fast time for 7 instants of the slow time (curves 4). A change of the subharmonic 
amplitude with the time, as expected, is well approximated by the curve IA,,, 
cos (Awt) 1 ,  marked by the dashed line in figure 15 (c) .  

A vector diagram for priming subharmonic oscillations given to the vibrating 
ribbon (see (5)) is shown in figure 16 (a). It is very close to the diagram for fluctuations 
of frequencyfb a t  z = 300 mm, shown in figure lS(b) (see also figure 15c). In  figure 
16 (a) there is a uniform slow rotation of a vector Bg, which has a constant modulus, 
around the origin of coordinates with an angular velocity Aw 4 w:. It differs from the 
case of non-controlled priming oscillations, represented qualitatively in figure 7 .  A 
resonant amplification of a vector component, having the phase $r (or $,+n), from 
the point of view of a vector diagram, leads in the end to the situation represented 
in figure 16(c), which corresponds to a predominance of oscillations with resonant 
phase (see figure 15). 

Represented in figure 17  (a) oscilloscope traces take place in an intermediate case, 
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FIGURE 16. Vector diagrams of subharmonic oscillations a t  controlled conditions. Principal regime. 
y/6 = 0.26, z = -2.5 mm. (a) priming oscillations fed on ribbon; ( b )  oscillations a t  z = 300 mm; 
(c) oscillations a t  z = 650 mm. 
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FIGURE 17. Behaviour of amplitudes and phases of subharmonics with slow time. Principal regime. 
x = 450 mm. y/S = 0.26. z = -2 .5  mm. (a,) oscilloscope traces in 8 moments of slow time: 1, 
reference signal. (b )  dependences of amplitudes and phases on time. (c) vector diagram. 

as a parametric interaction of the fundamental wave with the subharmonic fluctu- 
ations just began to  amplify the oscillations component with phases q5r and q5,+n. 
The curves correspond to subharmonic oscillations obtained from the hot-wire 
anemometer probe for 8 moments of the slow time a t  II: = 450 mm. The curve 1 is 
the reference signal. The corresponding dependences of At and q5i on the slow time 
T are shown in figure 17(b). Such oscillations correspond to the rotation of the 
subharmonic-fluctuation vector B&T) = A$ exp ($4) in the vector diagram along a 
trajectory of elliptic type (figure 17c) .  

It is not difficult to show that a t  Aw < w? a superposition of boundary-layer 
eigenoscillations of type (5) with the resonantly amplified pair of oblique sub- 
harmonics, which is shifted in phase by an angle O(z), gives the oscillations, whose 
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complex amplitude vector B+(T) describes a trajectory in the form of an ellipse on 
the vector diagram. A phase shift O(x) means a difference in phase velocities plane 
and three-dimensional waves and results in space beats when their amplitudes are 
approximately equal. The dependence of the phase $+ and the amplitude A+ of the 
summed vector Bi on (slow) time is described by the formulae 

tan (AwT) 
{Di+ ( I - D -  1)itan (AwT)  

$+(T) = arctan 

Ag(T) = {az cos2 [$i(T) -O’(x)] + b2 sin2 [$g(T) -O’(x)]}i. (7)  

The semiaxes of the ellipse are a = ( -  A/A2 D)i,  b = (-A/A, D)i. Here I, D and 
A are invariants of the second order curve, describing the trajectory of the vector 
Bi(T);  A,, A, are roots of the characteristic equation A 2 - Z A + D  = 0 (see e.g. Korn 
& Korn 1961). I n  the formulae (6) and (7) the phase $4 is counted from the resonance 
phase q5r, and O’(x) is the angle of the inclination of the ellipse’s principal axis to the 
line $ = $r. I n  the space points, where O(x) = 0, B‘(x) is also equal to zero. I n  this 
case the formula (6) is greatly simplified : 

tan (AwT)  

Y 
q5i(T) = arctan > 

where 

Here S is an amplification rate of subharmonics a t  the parametric resonance, which 
is proportional to an amplitude of the fundamental wave ; aip and aiT are amplification 
rates of a plane subharmonic and a three-dimensional one in the absence of a 
resonance, which are determined from linear stability theory; xo is the coordinate 
of the origin of the resonant amplification. Bf and B f  are initial amplitudes of plane 
an three-dimensional waves having frequency f+. 

It is to be noted that a t  x = xo (i.e. before the start of the amplification) 
y = (B,P + BT)/Bf. It corresponds at Bf < Br to  circular motions of a vector of initial 
(primiig) chllations and coincides with the situation shown in figure 16(a). In  
contrast, Sy 9 1 and €”O a t  very large x or S, i.e. under these conditions a trajectory 
of vector Bi(T) approaches a straight line coinciding with the line $ = $,., which 
corresponds to the situation of figure 16(c). The dependence of the subharmonic 
amplitude and phase on the time, given by the formulae (6) and (7), correlates well 
with the experimental points in figure 17 (b)  (solid line). Here the coefficients a and 
b in (6) and (7) were determined as semiaxis lengths of the ellipse in figure 17 (c).  

The resonance is seen to  occur already a t  the ‘initial’ section x = 300 mm, a t  
a distance of 50 mm from the vibrating ribbon. It leads to formation of an ellipse 
in figure 16(b) with semiaxis ratio y = 1.2 (dashed line). y is equal to 2.78 a t  
x = 400 mm, and a t  x = 450 mm the resonance stretches a trajectory of Bi to the 
ellipse with y = 4.58 (see figure 17c). 

does not depend practically on x and z in the region 
of parametric amplification, and i t  is changed only with y because the forms of 
the $l(y) and $;(y) profiles differ (figure 12, 22) .  Averaged from a large number 

The value of 9, = 
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of measurements the value of q5r a t  y /S  = 0.26 is equal to 81'k 7' of the subharmonic 
period, both in the case of amplification of priming oscillations and a t  the controlled 
priming. The value q5r is equal to 89'+ 7' in the critical layer (y/S = 0.22 a t  R = 633), 
i.e. q5r w in within the error. Values of q5r correspond here to the phase shift between 
crests ofthe fundamental wave and the subharmonic. The value q5r w in manifests itself 
on observation of signals on the oscilloscope screen as a vibration of troughs of t,he 
fundamental wave in the summed signal in the region of large amplitudes of the 
resonantly amplified subharmonic, while the crests of the fundamental wave are 
practically fixed (the oscillation with subharmonic frequency crosses the zero value 
here). This peculiarity is seen well in figure 6, line 1. The angle between the principal 
axis of the ellipse and the abscissa axis in figure 16(c) is not equal to 9O0, because 
the phase was counted not from the fundamental wave but from the reference signal. 
A scatter of points in figures 15(c), 16 and 17 is connected with no very large 
predominance of the subharmonic fluctuations, amplified from the imposed priming 
(figure 16a), over background random fluctuations of frequency f ;  (compare A;(") in 
figure 13 with that in figure 23a) .  

Using the method described by Volodin & Zelman (1978), Zelman & Maslennikova 
( 1982) carried out numerical calculations of subharmonic and fundamental-wave 
amplification. I n  particular they have obtained data for different initial phase shifts 
Aq5 = The results of the calculations showed that when an initial phase of 
a subharmonic is orthogonal to its resonance value, i.e. Aq5 = q5r+ in, the subharmonic 
not only fails to  grow but i t  also damps with the same rate approximately as a t  
Aq5 = q5r. Other things being equal, it  lags behind the subharmonic, having Aq5 = q5r, 
an order of magnitude or more in amplitude, and then it begins to grow. The 
amplification is connected with a detuning, taking place a t  a downstream change of 
Reynolds number. The detuning results in a change of Aq5 and appearance of an 
oscillation component with the resonant phase = q5r which begins to grow. 
However, subharmonic amplification rates, a t  the initial value Aq5 = $,+in, cannot 
of course exceed their maximum value, a t  A$ = q5r, and therefore the amplitude of 
the subharmonic at  the initial value Aq5 = $,.+in remains always an order of 
magnitude or more less than its amplitude a t  initial value of Aq5 = q5r. 

4.2. Spectral width of resonance 

An evolution of trajectories on the vector diagram described in $ 4 . 1  (figure 16, 
17c) means, from the spectral point of view (a large-time analysis), an evol- 
ution of spectra shown qualitatively in figure 18. As a result of the resonance, 
a priming disturbance with a frequencyf = fi- Af, having a constant amplitude and 
phase (figures 15, 16a, amplitude spectra in figure (18a)), turns into an oscillation of 
frequency f+, with amplitude oscillations and phase jumps according to the law of 
cos(Awt) (figures 15, 16c), having an amplitude spectrum in the form of two 
components with frequencies f;-Af and f ; + A f ,  whose amplitude and phase do not 
depend on the time (figure 18 c ) .  The spectrum represented in figure 18 ( b )  corresponds 
to an intermediate state when the form of the trajectory of a vector B;(T) (figure 17) 
is characterized by an ellipse. 

Thus is can be said that the parametric subharmonic resonance leads to  the 
amplification of the pair of spectral components with frequencies f i  = f ;  Af in the 
case of detuning Af =!= 0. As represented in figure 19, the amplitude spectra are a 
direct experimental corroboration of this conclusion, which has been obtained 
essentially from an analysis of fluctuation oscilloscope traces ($4 .1) .  The spectra were 
obtained at  a fixed position of the probe a t  x = 650 mm (R = 633) for different values 



232 Yu. S. Kachanov and V .  Ya. Levchenko 

L 
1 f  

FIGURE 18. Qualitative evolution of spectrum at parametric resonant excitation of controlled 
subharmonic priming; A j  = frequency detuning. 
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FIGURE 19. Spectra at  different frequency detunings between the priming oscillation and ifi; 1 ,  
2, 3, 4, 5 correspond to f = -30, - 10, -5, 0, + 10 Hz. Principal regime. 5 = 650 mm ( R  = 633). 
y/S = 0.26, z = -2.5 mm. 

of detuning Af between frequencies of priming oscillations and the subharmonic. Each 
subsequent spectrum is moved relatively to the previous one downwards by 15 dB. 

The spectra given in figure 19 demonstrate a large spectral width of the resonance, 
i.e. a resonant excitation of disturbances with frequencies f ’  = f$ Af takes place even 
a t  large detunings. A resonant amplification of priming oscillations is observed a t  
detuning Af = -30 Hz (spectrum 1 in figure 19). It is possible to make an estimate 
of the spectral width of the resonance Afr from spectra in figure 19, defining Afr as 
Afr = 2Af, where Af leads to decrease in amplitude of resonantly amplified fluc- 
tuations in two times in comparison with their amplitudes a t  .f = 0, and assuming 
a linearity of the amplitudefrequency characteristic of a vibrating ribbon in the 
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frequency range f ik30  Hz (the eigenfrequency of the ribbon f o  x 120 Hz). The 
amplitude of excited fluctuations was found to be the average twice below a 
corresponding value a t  Af = 0 when the detuning Af = 20 Hz. It gives an estimate 
Af,. = 2Af x 40 Hz, which corresponds well to the estimate Afr x 50 Hz obtained 
for the case of a natural (non-controlled) subharmonic priming ( 5  3.7). 

It is to be noted that spectra on introduction of priming oscillations with 
frequencies f i + A f  and &-Af are similar (at least for small Af) and differ only by 
amplitudes of excited oscillations, which is explained apparently by a slightly greater 
sensitivity of the ribbon to frequency f++Af than to&-Af a t  a constant level of 
voltage on the output of the generator of priming oscillations. 

It is noteworthy that spectra in figure 19 are superpositions of a relatively con- 
stant background, of resonantly amplified non-controlled disturbances, and discrete 
components, amplified from a controlled priming and depending on detuning Aj. 
Special measurements of the oscillations intensity a t  different frequencies, a t  a 
smooth change of detuning Af with time, confirmed this conclusion. Deviations of 
the amplitude from a constant value were observed only in the cases as the fixed 
frequency window of an analyser a t  some Af had coincided with f’ = f ;  + Af or other 
discrete harmonics. This result seems to be quite natural and demonstrates the 
linearity of parametric resonance in the sense that a controlled priming resonates 
irrespective of non-controlled background priming oscillations. 

4.3. Existence of synchronism at excitation of controlled priming oscillations 

The study of x- ,  y- and z-distributions of amplitudes and phases of subharmonic 
oscillations has been carried out a t  detuning Af of frequencies of priming oscillations 
f ’  and subharmonic f +  being equal to 0.25-0.05 Hz, which means f ’  x f i  practically. 
However, the introduction of slight detuning was more convenient than the exci- 
tation of oscillations with the frequency f’ = f+ coherent to the fundamental wave. 
This is connected with the presence, in the first case, of slow quasi-stationary beats 
of a subharmonic amplitude with a period TA x 2-10 s (i.e. the periodical appearance 
and disappearance of the resonance). I n  particular, a detuning permitted separation 
of harmonics in a spectrum which appeared, because of the resonance, from other 
oscillations (see $4.5). The oscillation amplitude, corresponding to the resonance, was 
determined as At(T = To), where To is a slow time instant where the subharmonic 
amplitude was maximum, i.e. A$(%) = max{At(T)}. 

The measurements showed that all properties of amplitude and phase distributions 
for subharmonic oscillations, amplified from the controlled priming, coincide pract- 
ically with corresponding properties for the case of non-controlled priming fluctuations 
(see $3).  

The distributions Ag(z) and &(z)  a t  x = 600 mm (R = 608) for the controlled case 
are represented in figure 20(a) .  Also given in this figure are the corresponding 
distributions for the fundamental wave. Like the case of non-controlled priming 
oscillations, space oscillations of the amplitude of the subharmonic and its phase 
jumps take place. These indicate an amplification of a pair of three-dimensional waves, 
symmetrical relative to the flow axis (see 53.3). The synchronous oscilloscope traces 
in figure 20(b)  demonstrate oscillations when the frequency f i  is in antiphase a t  the 
points z = - 15.0 mm, -2.5 mm, and 12.5 mm. In this case the spanwise components 
of the wavevectors K l  and K; have the value /3+ = 0.195 mm-l, pis* = 0.332. This 
coincides with the case of the non-controlled priming (see table 1 )  within the error 
of determination of /34 (Apt x 0.02 mm-’). 

It is to be noted here that initial priming disturbances, not only in the controlled 
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case but also apparently with non-controlled priming, are initiated, in the main, 
by the vibrating ribbon, which ‘makes a noise’ (slowly turbulates a flow) in a broad 
range of frequencies. In  both cases, although an initial spectrum relative to /? consists 
mainly of harmonics with p FZ 0 (plane waves), i t  contains also a broad ,’-spectrum 
because of the finite length of the ribbon. The parametric resonance leads to 
emergence from this wave spectrum of the pair of oblique waves p = & in both cases. 

The existence of synchronism (conditions (4)) is demonstrated by disturbance phase 
distribut’ions, represented in figure 2 1 (see also 3 3.3). Wavenumbers determined from 
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FIGURE 22. y-profiles of amplitudes and phases for fundamental wave ( 1 )  and subharmonic (2) at 
controlled conditions. Principal regime. r = 600 mm (R = 608), z = -2.5 mm. 

these distributions have values a4 = 0.101 mm-', aid* = 0.172 (at  x = 600 mm), 
which gives &/a4 = 1.93 and subharmonic propagation angles 

@ = +arctan (pila;) = 62.7'. 

It is evident that the values of a+, /3;, 0; coincide with good accuracy with 
corresponding ones for the parametric resonance with a natural random priming (see 
table 1 )  and satisfy the synchronism conditions. 

Special oscilloscope measurements a t  the 30 Hz bandwidth of the analyser showed 
that, within measurement error, a resonant phase-shift value #,. = #i-#l does not 
depend on the value of frequency detuning Af of priming oscillations in the detuning 
range - 30 Hz < Af < + 30 Hz. Thcy indicate the presence of the phase synchronism 
even a t  large detunings. This is possible because of an amplification of a pair of 
harmonics symmetrical relative to fi. The phase of each of these harmonics is changed 
in time, but their superposition gives oscillations of frequency f;, with amplitude beats 
and fixed phase (with 180Ojumps). 

4.4. ProJiles and growth curves of $fluctuations 

Profiles in y of amplitudes and phases of the fundamental wave and the subharmonic, 
amplified from a controlled priming, are given in figure 22 for x = 600 mm (the origins 
of the phases are arbitrary). It is seen that, as in the case ofnon-controlled priming, 
the maximum of the subharmonic is in the region of the critical layer and the phase 
distribution has a characteristic form of a 'dipper'. The distributions of A:(y) and 
$g(y) coincide with those in figure 1 1  in all features. 

The growth curves for the fundamental wave and subharmonic are represented in 
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figure 23(a). As in the case of natural priming (figure 13), a region of an almost 
exponential amplification of the subharmonic is observed where the fundamental 
wave amplitude is constant. However, the amplification itself becomes noticeable 
early, which is connected with an increased initial amplitude of the priming (see $4.2 
and the spectra in figure 19). The resonant amplification rate of the subharmonic in 
this case and in the case of a non-controlled priming (figure 13a) are in good 
correspondence with each other. 

In  the controlled case a t  x FZ 300-350 mm (R FZ 430-464) the subharmonic phase 
drifts almost uniformly with Af z 0.25-0.05 H z ,  which indicates a slow manifestation 
of a resonance (see $3.1). Then, a t  x z 400-450 mm, oscillations of amplitude and 
phase, corresponding to an elliptical trajectory in figure 17,  are observed. Finally, a t  
x > 450 mm, a fixed value of the subharmonic phase with 180' jumps and amplitude 
oscillations, corresponding to predominance of resonantly amplified subharmonic 
oscillations (see §4.1), are observed. 

An amazing property of the fundamental wave in this case should be mentioned 
here. I ts  amplitude remains almost independent of the time even a t  x = 700 mm, 
where the periodically appearing resonance leads to modulation of the amplified 
subharmonic from a near-zero value up to A: = 2.4A,! This points to a periodic 
transfer of energy from the mean flow to the subharmonic by means of the resonant 
interaction. 

Results of the previously mentioned calculations of Zelman & Maslennikova (1982), 
carried out for conditions close to those of the present experiments, are represented 
in figure 23 (b ) .  They agree qualitatively with the experiment. Both in the theory and 
in the experiment in this case, a t  almost constant fundamental wave amplitude 
A,(x) in the region R = 550-650, the subharmonic growth proceeds by the usual 
exponential law instead of a double-exponential law (see Volodin & Zelman 1978). 
The experimental amplification rates of subharmonics in this region reach the 
theoretical values at rather larger amplitudes of the fundamental wave. Apparently, 
the difference is connected with the extremely large values of the fundamental wave 
amplitudes in the experiment ( A ,  - 1 yo) needed for use in a slow-nonlinear theory, 
and with a difference in conditions of the experiment and the theoretical model. In  
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particular, only a few periods of the subharmonic and some non-uniformity of 
fundamental wave amplitude in the direction of the z-axis are observed in the 
experiment, while an idealized case of a z-periodic subharmonic and a strictly plane 
fundamental wave are considered in the theory. 

4.5. Behaviour of higher harmonics 

As was mentioned in $3.1, oscillations with frequencies fi = 2f1 and f 3  = 3f1 had been 
present in the flow besides the fundamental wave and low-frequency fluctuations. 
Growth curves for amplitudes of these harmonics are represented in figure 23 ( a )  
and their phases, measured in radians of the fundamental wave period, are given in 
figure 21. The conditions w J a l  = oz/a2 = oJa3 (a, = 0.203 mm-l, a2 = 0.408 mm-l, 
a3 = 0.604 mm-l), which together with the equalities w2 = 2w,, w3 = 3w, are the 
synchronism conditions, are seen to occur exactly for higher harmonics as well as 
for the subharmonic. The analogical observation was made by Kachanov (1978) with 
regard to the processing of data obtained in experiments by Kachanov et al. (1977). 
By this means, the presence and amplification of the subharmonic influenced the 
development of high harmonics in the greater part of the region of disturbance 
development. Thus, it was found, in the regime with controlled subharmonic priming 
of frequency f '  = A +  Af, that the harmonics fi and f3 were stationary up to 
x = 625 mm, i.e. their amplitudes and phase did not depend on time, whereas the 
subharmonic parametric resonance appeared and disappeared periodically with a 
period TA = (2Af)-' = 2-10 s. I n  the case of a non-controlled priming, the sub- 
harmonic amplitude and phase changed in the time in a very complex way (see §3.2), 
whereas the amplitude and phase of higher harmonics remained practically 
independent of the time up to x = 680 mm. 

High-harmonic growth curves correspond to those in the work of Kachanov et ul. 
(1977) qualitatively. Differences are connected with a difference in the method of 
measurement of amplitudes of harmonics: in the work of Kachanov et al. (1977) the 
measurements were carried out using maxima in profiles of each of the harmonics 
(forms of profiles in the present experiment are analogous to those in the experiment 
of Kachanov et al. 1977). 

At increasing x,  when a three-dimensionality of the fundamental wave is increased 
(see §3.3), a three-dimensionality of higher harmonics is also increased. Thus, a t  
x = 600 mm on some z-sections, the change of z in 2 mm a t  y/6 = 0.26 could lead to 
the change of amplitudes of the second and third harmonics in two times and to the 
change of their phases on n. The process of the generation of three-dimensional higher 
harmonics plays a great role a t  the K-regime of transition, and, as was mentioned 
in $3.1, it  becomes considerable a t  larger initial amplitudes of the fundamental wave, 
when i t  blocks the process of the resonance excitation of the subharmonic or outruns 
it. 

4.6. Properties of combination modes 

The excitation of harmonics with frequencies fg = fl and f; = # fl,  being coherent with 
a fundamental wave, had been observed both in the regime with a controlled 
subharmonic priming and without it. However, in the first case the process of the 
excitation of such harmonics is observed more clearly, and therefore, in this paper, 
distributions of amplitudes A+ A: and phases $4, $3 versus different coordinates are 
represented for controlled conditions. 

Distributions of phases (in radians of the period 7; = l/fl) and amplitudes of 
combination harmonics are shown in figures 21 and 23(a) .  Wavevector x- 
components have the values a; = 0.308 mm-l, a+ = 0.510 mrn-l, i.e. a; 6* = 0.524, 
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aaS* = 0.867, a t  x = 600 mm (R = 608). Graphs and given numbers demonstrate 
again the satisfaction of the synchronism conditions, which is not surprising because 
combination modes are the result of an interaction of type f = mfl+f:, and the 
existence of the synchronism between mfl, f; and fl was detected early (893.2, 
4.3 and 4.5). 

Unlike harmonics fi and f3, amplitudes and phases of harmonics f j  and f; 
depended on the time and oscillated with period TA = iAf (where Af = 0.25 + 0.05 Hz 
is the detuning of priming oscillations) on appearance and disappearance of the 
parametric resonance, the oscillation character coinciding with subharmonic oscill- 
ations. Namely, amplitudes A; and A$ varied as Icos(Aot)) in phase with the 
subharmonic amplitude, and phases q 5 g  and q5g in the region of minimum amplitude 
changed through 180° by jumps simultaneously with subharmonic phase jumps, being 
constant between jumps. Such behaviour is natural and connected with the nature 
of harmonics f; and f;. 

Distributions A;(z) and c&(z) a t  x = 600 mm arc represented in figure 20. They 
show a three-dimensionality of fluctuations of frequency f ; ,  which are mainly like the 
subharmonic, a pair of oblique waves having approximately the same z-component 
of the wavevector, /?; z /3+ = 0.195 mm-l. The angles of inclination 08 of wavevectors 
KC to the flow axis differ from those for the subharmonic 0 f : 0 $  = 
& hrctan (/3;/a;) = arctan 0.633 = 32.3”. 

I t  should be mentioned that the appearance of the oscillations of frequency q, with 
j3; = pi, follows apparently from the interaction of the fundamental wave (q, a,, 0) 
with the subharmonics (q, a+, *p i ) ,  which gives in terms O(A, A+) the harmonics of 

Profiles of the combination mode amplitudes Aj(y) and A&) a t  x = 600 mm 
( B  = 608) are represented in figure 24. They have two maxima in the wall part of 
the boundary layer : one maximum is located immediately near the wall a t  y/S = 0.03 
and another maximum is placed near the subharmonic maximum a t  y/S = 0.28. The 
third maximum is observed in the outer part of the boundary layer. 

(ol + ~ i ,  a, +a$, +Pi)  type. 

5 .  Discussion 
5.1. Main conclusions 

The process of laminar-flow breakdown is essentially nonlinear and depends critically 
on outside factors. It compels care to be taken with new experimental (and also 
theoretical) results in this field. Quite a numbcr of ‘anomalous’ results on transition 
are known, some ofwhich were explained by experimental-facility properties or specific 
conditions of experiments. (The transition reversal in a supersonic boundary layer 
with deep cooling of the wall is the striking example (see Lysenko & Maslov 1981). 
This phenomenon proved to be connected closely with humidity of air in wind tunnels 
and the falling of hoar-frost on the surface.) Therefore it is recognized (see 
Reshotko 1976; Herbert & Morkovin 1980) that  results can be considered as a well 
established fact if the following conditions are realized. ‘Whenever possible, tests 
should involve more than one facility. Tests should have ranges of overlapping 
parameters, and whenever possible, experiments should have redundance in transition 
measurements’ (Reshotko 1976). Morkovin (1978) has extended these stipulations to 
theoretical researches too, by a ‘facility’ - meaning a theoretical model with its 
computer program. 

The generation of subharmonics of the Tollmien-Schlichting fundamental wave 
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and other low-frequency (in comparison with a fundamental wave) disturbances and 
their important role in the transition process a t  certain conditions were experimentally 
derived for the first time by Kachanov et al. (1977). In fact, a new path of transition 
of a laminar boundary to  a turbulent one, differing from classical K-breakdown (see 
Klebanoff et al. 1962) in principle, was discovered by them. 

Thomas & Saric (1981) and Saric, Carter & Reynolds (1981) have presented visual 
observations of laminar-turbulent transition in a boundary layer on a flat plate. The 
experiments were carried out a t  the same time as the present experiments. Thc 
visualization of a picture of laminar-regime breakdown was obtained by means o f  
the smoke-wire method (see Coorke et al. 1974) in two different wind tunnels. Two 
different types of laminar flow breakdown were reported. One type of breakdown was 
characterized by the presence of a system of A-shaped vortices, following one after 
another with the period of the fundamental wave. Such a picture corresponds to the 
K-breakdown regime with the formation of typical ‘spikes’ in the oscilloscope traces, 
taken in the regions of A-shaped vortex tops, and subsequent high-frequency 
fluctuation splashes (see e.g. Knapp & Roache 1968). 

I n  another case, the period of a one-after-another movement of vortex structures 
was doubled, which corresponds to oscillations with frequency ifl, i.e. to the pre- 
sence of the subharmonic of the fundamental wave. Thus, in view of the ex- 
periments of Kachanov et al. (1977), Thomas & Saric (1981), Saric et al. (1981) and 
the present data, the presence of the subharmonic of the fundamental wave at the 
laminar-turbulent transition in a boundary layer should be considered as a well-established 
fact. Saric et al. (1981) have mentioned that the picture corresponding to K-breakdown 
can be observed a t  sufficiently large amplitudes of the fundamental wave. The picture 
corresponding to the presence of the subharmonic was observed a t  small initial 
amplitudes of the fundamental wave, the breakdown in this case taking place behind 
the second branch of the neutral stability curve. These observations coincide with 
those in Kachanov et al. (1977) and the present paper (see 83.1). 

The present study was undertaken a few years after the work of Kachanov et al. 
(1977). The same regime of laminar flow breakdown was realized. A fast excitation 
of the broad spectrum of low-frequency fluctuations, including the subharmonic, with 
simultaneous appearance of three-dimensionality and following filling of a spectrum 
by an interaction of low-frequency fluctuations with the fundamental wave and its 
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harmonics, are the principal features of the present type of transition. No appearance 
of high-frequency splashes, intermittency and turbulent spots is observed, unlike 
K-breakdown. I n  the subsequent stage (stage I11 of Kachanov et al. 1977) a rapid 
growth of all spectral components takes place, which is accompanied by development 
of strong three-dimensionality of flow. In  this sense, like the case of K-breakdown, 
it is possible to speak of a catastrophic character of the transition, on a secondary 
instability. However, in contrast with a high-frequency secondary instability leading 
to K-breakdown, low-frequency disturbances play the main role in the present case, 
i.e. i t  is probably possible to speak of a low-frequency secondary instability. The in- 
vestigations carried out in the present work showed the cause of the appearance 
of the low-frequency fluctuation packet to be the parametric resonant excitation of 
a pair of oblique subharmonic waves by the plane fundamental wave in accordance 
with the theoretical model of Craik (see Craik 1971 ; Volodin & Zelman 1978). I n  the 
case of a broad spectrum of priming oscillations, the parametric resonance results in 
an amplification of a rather broad packet of low-frequency oscillations. The spectral 
width of the packet is connected with the sporadic appearance and disappearance 
of the resonance in time, which is caused by the change, in time, of the initial 
conditions for the resonance and results in a modulation of subharmonic amplitude 
and jumps of subharmonic phase. The three-dimensional nature of resonant sub- 
harmonics explains the cause of simultaneous appearance of the three-dimensionality 
and packet of low-frequency fluctuations in the present type of transition (region I1 
in Kachanov et al. 1977). 

Thus, because of a stochasticity of priming oscillations in the frequency range 
fi & +Afr the deterministic process of parametric resonant interaction leads to exci- 
tation of the whole packet of three-dimensional low-frequency fluctuations, resulting 
in the onset of randomization of the disturbance development process. The subsequent 
interaction of the packet with the fundamental wave and its higher harmonics leads 
to the filling of the whole spectrum and the complete randomization of the process. 
These are the main features of the present type of laminar-turbulent transition. 

5.2. Two types of transition: causes of their difference 
What are causes of appearance of the two different types of transition discovered 
by Klebanoff & Tidstrom (1959) and Kachanov et al. (1977) ? 

The causes of appearance of the K-breakdown regime are discussed in the litera- 
ture, and different points of view exist (see e.g. Volodin & Zelman 1981 ; Tani 1981). 
For the authors of the present paper, Craik’s (1971) idea of the excitation, a t  an initial 
stage of formation of the K-breakdown regime, of a pair of three-dimensional waves 
with the fundamental wave frequency w1 under the action of a plane wave with 
the frequency 2w1 is most attractive. This idea was developed further by Nayfeh 
& Bozatli (1979b), where the interaction of four waves (wl, al,O), (2w1, 2a1,0), 
( w l ,  al, i-p,) was considered and calculations were applied to the conditions of the 
experiment of Klebanoff et al. (1962). It was considered in this paper that  essentially 
‘two interaction processes [take] place a t  the same time. The first one is the interaction 
between a two-dimensional fundamental wave and its second harmonic. As shown 
by Nayfeh & Bozatli (1979a), this is a strong destabilizing mechanism for the second 
harmonic. In  the second part of the interaction, the second harmonic interacts with 
its two three-dimensional subhax-monic waves of order one-half and produces large 
increases in the amplitudes of the three-dimensional waves.’ 

It can be supposed on the grounds of the work of Klcbanoff et al. (1979, 1962) and 
Nayfeh & Bozatli (1979b) that  resonant interactions, resulting in an amplification 
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of different pairs of oblique waves, play an important role a t  an initial stage of 
appearance of the K-breakdown regime as well as the regime studied by Kachanov 
et al. (1977) and in the present paper. The transition process, studied by Kachanov 
et al. (1977) (‘case 2 ’ ) ,  starts with the resonant amplification of a pair of oblique 
subharmonics from random priming oscillations under the action of a plane funda- 
mental wave. On the other hand, the onset of K-breakdown (‘case l ’ ) ,  to all 
appearances, is connected with the mechanism described theoretically by Nayfeh & 
Bozatli (1979b) and is caused by the resonance excitation of a pair of oblique waves 
with a fundamental wave frequency f, under the action of the plane harmonic with 
a frequency 2f1, from three-dimensional priming disturbances, generated by a 
vibrating ribbon on a fundamental frequency f,. Therefore the question of which one 
of our transition regimes will be realized in a concrete case is apparently the same 
as the question of which of the aforementioned resonances will manifest itself the 
earlier, or (speaking figuratively) will be ‘stronger’ and gain victory over the other 
one. 

A resonance ‘ strength ’ means the intensity of a pair of resonantly amplified waves 
(at  some point of space), which depends on the amplification rate of resonant waves 
and the amplitude of priming oscillations. A criterion of the ‘victory’ in this 
competition is apparently the reaching by resonantly amplified three-dimensional 
disturbances of the amplitudes of order an amplitude of the fundamental wave A , ,  
when the strong nonlinear interaction of waves begins, the advantages of one type 
of resonance being simultaneousPy the defects of the other one. 

In  the first case, i.e. at realization of the K-breakdown regime, a large amplitude 
of priming oscillations is the main advantage, because these oscillations have the 
frequency of a fundamental wave. The main defect of resonance in this case consists 
in the fact that the amplitude of the second harmonic A,, which excites oblique waves 
with amplification rates proportional to A,, is not very large in comparison with the 
amplitude of the fundamental wave. 

In  contrast, in the second case, i.e. at subharmonic excitation, resulting in the 
second type of transition, a large amplitude of a plane forcing wave, which coincides 
here with a fundamental wave, is the main advantage, which ensures large amplifi- 
cation rates of the subharmonics. However, the excitation begins from background 
priming oscillations with very small amplitudes, which require large distances in 
space for their sufficient amplification. 

Strictly speaking, under priming oscillations only those disturbances are meant for 
which the synchronism conditions (4) are realized. A wave spectrum of initial 
oscillations in the resonance band contains mainly the plane waves (/I z 0) both in the 
first case and, apparently, in the second (see $4.3). However, in view of the finite 
length of a vibrating ribbon, a broad spectrum of oscillations with /I =+ 0 is present 
in this spectrum. This spectrum contains, in particular, the waves for which the 
synchronism conditions are also realized (at 0 x 60’). 

In  the light of the aforesaid, it is clear why the first regime of transition appeared, 
in the works of Kachanov et a2. (1977) and Saric et al. (1981) and in the present 
experiments, when the amplitude of vibrating-ribbon oscillations was increased, and 
why the appearance of the second regime was observed a t  smaller amplitudes. On 
increasing A,, the intensity of a forcing wave exciting the subharmonic (case 2) 
increases, but the value of the priming remains constant. On increasing A ,  in the first 
case, the amplitude of a forcing wave A, (the amplitude of the harmonic 2 f i )  increases 
faster than A, because the term responsible for pumping of energy from f, to 
f, = 2f1 is proportional to  A: (see e.g. Nayfeh & Bozatli 19793). Simultaneously with 
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the growth of A,, the intensity of the priming, in the first case, also increases, 
although it  was large without that. Moreover, it  was detected by the authors of the 
present paper that, on increasing the ribbon oscillation amplitude, the width ofa  wave 
packet on a frequency f i  increases owing to  an amplification of small-scale (in 
comparison with the ribbon length) non-uniformity on z (a large p). These non- 
uniformities are apparently connected with some z-non-uniformities of the ribbon 
form (local attack angles, bending, etc.) and the value of the magnetic field. The de- 
tected phenomenon also contributes to increase of priming disturbances in the first 
case and its prevalence over the second one increasing the signal fed to  the ribbon. 

For existence of a parametric resonant amplification, realization of the condition 
of a favourable initial phase for priming oscillations is necessary, besides realization 
of the synchronism condition, This condition leads to  the importance of a component 
of oscillations on a frequency of the excited wave, having a phase $,. relative to 
the forcing wave. It is very important in the first case. Then the value of the resonant 
component is proportional to cos (& - $,.), where $, is a phase shift between the 
fundamental wave and a wave with the frequency 2f ,  excited by a harmonic 
resonance. Apparently the K-breakdown regime would not appear even a t  very large 
amplitudes of a fundamental wave in the hypothetical case $, = $r+&t. However, 
because of a dependence of flow parameters on R, this condition can be realized only 
a t  one point because cos ($2 - $r) + 0 downstream, and the resonance can take place 
all the same (see $4.1). It should be noted that amplitude A,  and phase $, of the second 
harmonic depend only on parameters of a flow and a fundamental wave (R, F, ,  A,)  
and do not depend on background priming disturbances with frequency 2f,, if their 
intensity is sufficiently small. I n  the second case the condition of resonant excitation 
$8-4, = $r results in the singling out, from a continuous spectrum of priming 
oscillations, a wave packet of frequency bandwidth fi -+iAfr, with wave phases having 
the definite properties studied in $3.4. 

In  conclusion i t  should be mentioned that, apparently, three-wave resonant 
interactions play a very important role in the subsequent development of K-transition. 
It was noted in Kachanov et al. (1982) that  the excitation of harmonics nw, 
(n = 2 , 3 ,  . . .) ischaracteristicofthe K-regime in well-controlled conditions, amplitudes 
of these harmonics, when ‘spikes ’ appear, reaching values close to  the amplitudes 
of a fundamental wave. With these conditions, besides the resonance of Nayfeh & 
Bozatli’s (19796) type, all conditions for resonances (2nw,, a,,, O ) +  (nu,, $a,,, kp,), 
where n = 2,3 ,4 ,  . . . , arise. Pairs of three-dimensional waves +pn with frequencies nw, 
can amplify as a result of these resonances. Because of strong resonant linkage of 
disturbances in such triads, their development can be probably considered, in first 
approximation, independently. Apparently, just the simultaneous nonlinear 
amplification of two-dimensional harmonics and appearance of the above set of 
three-wave resonances result in, at superposition, formation of the typical, t -  and 
z-periodical, nonlinear system of waves with z-peaks and t-spikes which is typical 
for an definite stage of K-breakdown. 

The authors are indebted to Dr M. B. Zelman and I. I. Maslennikova for imparting 
the results of their calculations. We would also like to acknowledge valuable 
discussions with Prof. W. S. Saric. 
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Appendix. A remark on interpretation of the experimental data 
All experimental data of this paper were obtained by the use of a single-wire probe 

and related only to the longitudinal components of velocities. Main attention 
was concentrated on the elucidation of the nature of the subharmonic, and it was 
proved that the excitation of the subharmonic has a resonant character. All data 
on the amplification of the low-frequency packet of waves are explained in terms of 
the resonant amplification of the oblique symmetric subharmonics having some 
sufficiently broad spectral width of the resonance. The effective resonance within the 
symmetric triad of waves a t  sufficiently large values of detunings from conditions 
of exact resonance is corroborated by calculations (Zelman & Maslennikova 1982). 
However, the data on the excitation of a low-frequency disturbance packet with 
some distinct peaks can suggest the existence of some other, non-symmetric, resonant 
triads of the type 

Indeed, all results on excitation of low-frequency oscillations can be treated in the 
language of resonant triads of type (A 1 )  as well as on the language of symmetric 
subharmonic triads. Using simple transformations, it is not difficult to show that both 
interpretations are absolutely equivalent. 

Let us redesignate in (A 1):  

i.e. the resonant triads (A 1 )  will be 

(2a4,0, 2 4 ,  (a4 + Aa, +_ pi, W$ + A o )  , (at - Aa, i /3$, ot - Aw) . (A 2 )  

Assuming the parallel approximation, i.e. independence of the form of eigenfunctions 
on x-coordinate, four waves, forming two pairs of oblique waves in triads (A 2),  can 
be presented in the form 

u,(z, y, z ,  t) = C, A(l)(y) eiS(’)(Y) e-a61)(z-z,) e i l ( a ~ + A a j 5 - ( W ? + A W ) t - 4 z + B z l  

u , ( ~ ,  y, z ,  t )  = C,  A(2)(y) eiS(2)(Y) e-ai2’ (z-z,) ei[(at-Aa) z - ( ~ i - A ~ ) t - B i z + ~ ~ l  

u4(x, y, z ,  t )  = C4 A(2)(y)ei8(2)(~) e-up) (z--50)ei[(a:-A~j~--(w?-Awjt+B:~+~Il. : I  u,(x, y, z ,  t )  = C, A ( U ( ~ )  & S ( ’ ) ( W  e-ar‘)(z-zo) ei[(=i+Adz-(w:+AW) t+B+z+41 

’ ( A 3 )  

Here Ci (i = 1 ,2 ,3 ,4 )  are the initial amplitudes of the waves (in the region of the 
resonance), A(5) eib(’)(Y) are complex functions of y-distributions of amplitudes and 
phases of waves ul, u2 (j  = 1 )  and ug, u4 (j = 2 ) ,  ay) ( j  = 1 ,2 )  are spatial amplification 
rates (they are equal to the sum of the linear amplification rates and the increment 
of parametric amplification), and 8, (i = 1 , 2 , 3 , 4 )  are initial phases of waves ui. Wave- 
vectors of (A 3) are represented in figure 25. 

Apparently, we can make the formal addition of the wave u1 with u4 and u2 with 
ug, having obtained a pair of symmetric waves of the type 
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-4 +Pi  P 

FIGURE 25. Wavevectors of (A 3). 

We have here 

D, sin [W + 8, + Aax - Awt] + D, sin [a@) + 8, - A m  + Awt] 
D, COS [a(,) + 8, + Aax - Awt) + D, cos [a(,) + 8, - Aax + Awt] ’ tan 8+(x ,  y, t )  = 

D&, y) = lU&, y, 2, t)l ( i  = 1,2 ,3 ,4) ,  

and the corresponding formulae for D-(x, y, t )  and &(x ,  y, t ) .  The main thing in (A 4) 
is x- and t-modulation of amplitudes and phases. 

Then the formal sum of waves (A 4) gives 

u(x ,  y, z ,  t )  = D(x,  y, z ,  t )  ei[~i”-Wit+e(”~ Y,z, t ) l ,  (A 5 )  

i.e. a plane wave with an amplitude and a phase, as the corresponding formulae show, 
modulated on x ,  z and t .  Just  such a summed signal is fixed by the probe of the hot-wire 
anemometer, and it can be interpreted in principle in terms of (A 5 )  as well as of (A 4) 
or (A 3). 

However, in order that  the experimental data of this paper might be treated in 
terms of (A 3), these waves must have some special properties besides the fact that 
they are resonant triads with the wave (al, 0, wl) .  

First, the amplitude of the subharmonic in the experiments depended on z as 
(cos ( B i z ) / ,  and its phase was constant on z within the jumps on 7 ~ :  It can be found 
from formulae for the amplitudes and the phases in (A 5 )  that  

D(x ,  y, Z ,  t )  = D’(x, y, t )  (p$z+A8),  

q x ,  y, 294 = O’(x, !I> 4 
when the amplitudes of u, and u, are equal, those of u3 and u, are equal and the phase 
differences 8, - 8, = 8, - 8, = 2A8. 
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Secondly, it has been emphasized more than once in this paper that the phase of 
the subharmonic in the experiments did not depend on the time (within jumps on 
n), this fact being established with the utmost care. For the waves (A 3) to  correspond 
to this observation, equalities of amplitudes of u1 and u4, amplitudes of u2 and u3 and 
phase differences 8, - 8, and 8, - e3 are necessary. These equalities also eliminate beats 
on x. 

On realization of the aforesaid conditions (obviously, they are realized in this 
experiment) resonantly amplified subharmonic oscillations, observed in the experi- 
ments, can be treated either as the pair of symmetric oblique subharmonics (A 4) (as 
in this paper) or as two non-symmetric pairs of waves of type (A 3), or as one plane 
wave of type (A 5 ) .  

The aforesaid is concerned with the interpretation of experiments with a controlled 
priming subharmonic. In  the case of non-controlled initial subharmonic oscillations 
i t  is possible to  carry out analogous manipulations using a superposition of quartets 
of waves of type (A 3) with different detunings Au (and Aa) .  As a result we will have 
some conditions when the observed experimental data may with equal reason be 
treated by any of the above techniques. 

It should be mentioned that the equality of amplitudes ofthe subharmonics within 
a symmetric triad of type (A 4), corresponding to observed experimental facts (figure 
8), i s  in itself the effect of three-wave resonant interaction. This is also corroborated by 
calculations (Zelman & Maslennikova, 1982). 

In  conclusion it can be noted that the interpretation of the experimental data by 
different but not incompatible approaches is a matter of convenience to a certain 
degree. Different views on experimental data may sometimes lead to  the revealing 
of interesting physical phenomena (see e.g. Miksad et al. 1982). 
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